隐私计算是什么意思?

隐私计算(Privacy compute 或Privacy computing)是指在保护数据本身不对外泄露的前提下实现数据分析计算的技术集合,达到对数据“可用、不可见”的目的;在充分保护数据和隐私安全的前提下,实现数据价值的转化和释放

隐私计算的应用场景是什么?

政务大数据

当数据成为生产要素之一,将政务大数据赋能于新基建下的各行各业也成为一个重要课题。因此,政务大数据机构是隐私计算的重要客户之一,具体包括司法数据、社保数据、公积金数据、税务数据、水电燃气数据、交通数据、违章数据等。

医疗科研

在医疗机构中,病例数据作为最需要保护隐私安全的数据,对医疗科研与病情推断具有重要的价值。然而单个医疗机构的数据样本不足以支撑大规模的模型训练,传统的做法是将病例数据汇总、统计、销毁,这种操作是极其不安全的。

银行金融业务

银行作为传统金融机构的代表,在科技赋能的进化中,必然涉及到与外部数据的联合建模。银行也是隐私计算最可能率先完全落地的领域。

保险营销与定价

保险公司从线下发展到线上获客,对精准获取潜客需求极大,这里的精准度直接影响触达的成本。另外,“定价失灵”是当前财产险行业经营面临的一个突出问题,主要表现为保费不足和未决赔款准备金不利发展。

基金管理

在母基金的管理中,我们需要计算每个基金的真实收益情况。而基金的持仓信息是一个非常重要的私密信息,它代表了基金的价值判断和策略导向,也是基金公司的核心机密。这里的矛盾在于,一方面母基金出于管理需要信息共享,另一方面是基金本身却需要保护这些商业信息,传统方法必然导致一方的诉求无法得到满足。

推荐内容